Dynamically adjusting the k-values of the ATCS rule in a flexible flow shop scenario with reinforcement learning
Year of publication: |
2023
|
---|---|
Authors: | Heger, Jens ; Voss, Thomas |
Published in: |
International journal of production research. - London [u.a.] : Taylor & Francis, ISSN 1366-588X, ZDB-ID 1485085-0. - Vol. 61.2023, 1, p. 147-161
|
Subject: | reinforcement learning | production planning and control | dynamic adjustment | Sequencing rules | simulation study | Theorie | Theory | Simulation | Lernprozess | Learning process | Scheduling-Verfahren | Scheduling problem | Produktionsplanung | Production planning | Produktionssteuerung | Production control |
-
Reinforcement learning applied to production planning and control
Esteso, Ana, (2023)
-
Evaluating the effect of machine an routing flexibility on flexible manufacturing system performance
Singholi, Ajay, (2013)
-
The type-II assembly line rebalancing problem considering stochastic task learning
Li, Yuchen, (2017)
- More ...
-
Materialklassifizierung unter Einbeziehung von Bedarfsprognosen
Scholz-Reiter, Bernd, (2010)
-
Auswirkungen der Neufassung des Umwandlungssteuerrechts auf Sanierungsfusionen von Körperschaften
Mayer, Horst, (2007)
-
Scholz-Reiter, Bernd, (2012)
- More ...