Early Detection of Students at Risk – Predicting Student Dropouts Using Administrative Student Data and Machine Learning Methods
Year of publication: |
2018
|
---|---|
Authors: | Berens, Johannes |
Other Persons: | Schneider, Kerstin (contributor) ; Görtz, Simon (contributor) ; Oster, Simon (contributor) ; Burghoff, Julian (contributor) |
Publisher: |
[2018]: [S.l.] : SSRN |
Subject: | Studierende | Students | Künstliche Intelligenz | Artificial intelligence | Abbrecher | Drop-outs | Schüler | Pupils |
Extent: | 1 Online-Ressource (41 p) |
---|---|
Series: | CESifo Working Paper ; No. 7259 |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments 2018 erstellt |
Other identifiers: | 10.2139/ssrn.3275433 [DOI] |
Classification: | I23 - Higher Education Research Institutions ; H42 - Publicly Provided Private Goods ; C45 - Neural Networks and Related Topics |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Berens, Johannes, (2018)
-
Ethnic disparities in degree performance
Zorlu, Aslan, (2011)
-
Crawford, Claire, (2014)
- More ...
-
Berens, Johannes, (2018)
-
Berens, Johannes, (2018)
-
Berens, Johannes, (2018)
- More ...