Estimating stochastic volatility and jumps using high-frequency data and Bayesian methods
Year of publication: |
2016
|
---|---|
Authors: | Fičura, Milan ; Witzany, Jiří |
Published in: |
Finance a úvěr. - Praha : Datakonekt, ISSN 0015-1920, ZDB-ID 860318-2. - Vol. 66.2016, 4, p. 278-301
|
Subject: | stochastic volatility | Bayesian inference | quadratic variation | realized variance | bipower variation | self-exciting jumps | Volatilität | Volatility | Stochastischer Prozess | Stochastic process | Bayes-Statistik | Schätzung | Estimation | Schätztheorie | Estimation theory | Börsenkurs | Share price | Aktienindex | Stock index |
-
Equity index variance : evidence from flexible parametric jump-diffusion models
Kaeck, Andreas, (2017)
-
Allen, David E., (2020)
-
Bayesian estimation for high-frequency volatility models in a time deformed framework
Santos, Antonio A. F., (2021)
- More ...
-
Use of adapted particle filters in SVJD models
Fičura, Milan, (2018)
-
Historical calibration of SVJD models with deep learning
Fičura, Milan, (2023)
-
Determinants of NMD Pass-Through Rates in Eurozone Countries
Fičura, Milan, (2022)
- More ...