Estimation of the potential GDP by a new robust filter method
Year of publication: |
2023
|
---|---|
Authors: | Gyurkovics, Éva ; Takács, Tibor |
Published in: |
Central European journal of operations research. - Heidelberg : Physica-Verl., ISSN 1613-9178, ZDB-ID 2093829-9. - Vol. 31.2023, 4, p. 1183-1207
|
Subject: | Linear matrix inequality | Polytopic and quadratically bounded uncertainties | Potential GDP | Robust filtering | Trend-cycle decomposition | Unobserved components model | Zeitreihenanalyse | Time series analysis | Zustandsraummodell | State space model | Dekompositionsverfahren | Decomposition method | Nationaleinkommen | National income | Robustes Verfahren | Robust statistics | Schätzung | Estimation | Schätztheorie | Estimation theory | Bruttoinlandsprodukt | Gross domestic product | Konjunktur | Business cycle |
-
When are trend-cycle decompositions of GDP reliable?
González-Astudillo, Manuel, (2022)
-
Why are Bayesian trend-cycle decompositions of US real GDP so different?
Kim, Jaeho, (2020)
-
Which output gap estimates are stable in real time and why?
Barbarino, Alessandro, (2020)
- More ...
-
Dynamic output feedback H ∞ design in finite-frequency domain for constrained linear systems
Kazemy, Ali, (2020)
-
Estimation of the potential GDP by a new robust filter method
Gyurkovics, Éva, (2023)
-
Guaranteed cost solution for discrete-time uncertain/nonlinear dynamic games
Gyurkovics, Éva, (2024)
- More ...