Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction
Year of publication: |
2019
|
---|---|
Authors: | Chen, Shun ; Ge, Lei |
Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 19.2019, 9, p. 1507-1515
|
Subject: | Attention | LSTM | Prediction | Stock price | Hongkong | Hong Kong | Börsenkurs | Share price | Prognoseverfahren | Forecasting model | Prognose | Forecast | Kapitaleinkommen | Capital income |
-
Stock market openness and analyst forecast bias
Chen, Shenglan, (2021)
-
Renewable energy stocks forecast using Twitter investor sentiment and deep learning
Herrera, Gabriel Paes, (2022)
-
Conditional variance forecasts for long-term stock returns
Mammen, Enno, (2019)
- More ...
-
A learning-based strategy for portfolio selection
Chen, Shun, (2021)
-
Duan, Kun, (2023)
-
Ge, Lei, (2015)
- More ...