Fast generation of implied volatility surface : optimize the traditional numerical analysis and machine learning
Year of publication: |
2021
|
---|---|
Authors: | Yen, Jerome ; Chen, Bangren ; Wu, KangZahng ; Yen, Joseph |
Published in: |
International journal of financial engineering. - New Jersey : World Scientific, ISSN 2424-7863, ZDB-ID 2832504-7. - Vol. 8.2021, 2, p. 1-24
|
Subject: | Implied volatility | machine learning | Newton–Raphson | polynomial regression | Künstliche Intelligenz | Artificial intelligence | Volatilität | Volatility | Optionspreistheorie | Option pricing theory | Regressionsanalyse | Regression analysis | Black-Scholes-Modell | Black-Scholes model | Schätztheorie | Estimation theory | Prognoseverfahren | Forecasting model |
-
Artificial Neural Networks Performance in WIG20 Index Options Pricing
Wysockia, Maciej, (2020)
-
Symbolic regression-based adaptive generation of implied volatility
Yen, Joseph, (2022)
-
Fast pricing of American options under variance gamma
Fu, Weilong, (2021)
- More ...
-
Symbolic regression-based adaptive generation of implied volatility
Yen, Joseph, (2022)
-
The influence of trust and relationship commitment to vloggers on viewers' purchase intention
Chen, Yangyang, (2021)
-
CREDIT SCORING MODELS WITH AUC MAXIMIZATION BASED ON WEIGHTED SVM
ZHOU, LIGANG, (2009)
- More ...