Financial time series forecasting using empirical mode decomposition and support vector regression
Year of publication: |
March 2018
|
---|---|
Authors: | Nava, Noemi ; Di Matteo, Tiziana ; Aste, Tomaso |
Published in: |
Risks : open access journal. - Basel : MDPI, ISSN 2227-9091, ZDB-ID 2704357-5. - Vol. 6.2018, 1, p. 1-21
|
Subject: | empirical mode decomposition | support vector regression | forecasting | Prognoseverfahren | Forecasting model | Theorie | Theory | Zeitreihenanalyse | Time series analysis | Regressionsanalyse | Regression analysis | Mustererkennung | Pattern recognition | Dekompositionsverfahren | Decomposition method |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/risks6010007 [DOI] hdl:10419/195797 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A new multiscale decomposition ensemble approach for forecasting exchange rates
Sun, Shaolong, (2019)
-
Zheng, Junliang, (2023)
-
Outliers & predicting time series : a comparative study
Ardelean, Vlad, (2013)
- More ...
-
Financial time series forecasting using empirical mode decomposition and support vector regression
Nava, Noemi, (2018)
-
Anomalous volatility scaling in high frequency financial data
Nava, Noemi, (2015)
-
Risk diversification : a study of persistence with a filtered correlation-network approach
Musmeci, Nicoló, (2015)
- More ...