Fine-grained job salary benchmarking with a nonparametric dirichlet process : based latent factor model
| Year of publication: |
2022
|
|---|---|
| Authors: | Meng, Qingxin ; Xiao, Keli ; Shen, Dazhong ; Zhu, Hengshu ; Xiong, Hui |
| Published in: |
INFORMS journal on computing : JOC ; charting new directions in operations research and computer science ; a journal of the Institute for Operations Research and the Management Sciences. - Linthicum, Md. : INFORMS, ISSN 1526-5528, ZDB-ID 2004082-9. - Vol. 34.2022, 5, p. 2443-2463
|
| Subject: | job salary benchmarking | latent factor model | nonparametric dirichlet process | talent management | Theorie | Theory | Benchmarking | Nichtparametrisches Verfahren | Nonparametric statistics | Lohn | Wages | Faktorenanalyse | Factor analysis | Schätzung | Estimation | Hochqualifizierte Arbeitskräfte | Highly skilled workers |
-
Feasible weighted projected principal component analysis for semi-parametric factor models
Choi, Sung Hoon, (2023)
-
Dynamic Semi-Parametric Factor Model for Functional Expectiles
Burdejova, Petra, (2017)
-
Dynamic Semiparametric Factor Model with Structural Breaks
Chen, Likai, (2018)
- More ...
-
An ensemble learning approach with gradient resampling for class-imbalance problems
Zhao, Hongke, (2023)
-
Jiang, Shan, (2024)
-
Manufacturers' efforts and platform's demand information sharing in eco-friendly actions
Lin, Xiaogang, (2024)
- More ...