Fitting mixtures of Erlangs to censored and truncated data using the EM algorithm
Year of publication: |
2015
|
---|---|
Authors: | Verbelen, Roel ; Gong, Lan ; Antonio, Katrien ; Badescu, Andrei ; Lin, Sheldon |
Published in: |
Astin bulletin : the journal of the International Actuarial Association. - Cambridge : Cambridge University Press, ISSN 0515-0361, ZDB-ID 419201-1. - Vol. 45.2015, 3, p. 729-758
|
Subject: | Mixture of Erlang distributions with a common scale parameter | censoring | truncation | expectation-maximization algorithm | maximum likelihood | Schätztheorie | Estimation theory | Algorithmus | Algorithm | Statistische Verteilung | Statistical distribution | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Mathematische Optimierung | Mathematical programming |
-
Fitting mixtures of Erlangs to censored and truncated data using the EM algorithm
Antonio, Katrien, (2014)
-
EVM : A Fast Alternative to the EM Algorithm with Application to Gaussian Mixture Models
Britten-Jones, Mark, (2020)
-
Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models
Fung, Tsz Chai, (2022)
- More ...
-
Fitting mixtures of Erlangs to censored and truncated data using the EM algorithm
Antonio, Katrien, (2014)
-
Fitting Mixtures of Erlangs to Censored and Truncated Data Using the EM Algorithm
Roel, Verbelen, (2017)
-
Boosting insights in insurance tariff plans with tree-based machine learning methods
Henckaerts, Roel, (2021)
- More ...