Forecasting compositional time series : a state space approach
Year of publication: |
April-June 2017
|
---|---|
Authors: | Snyder, Ralph D. ; Ord, John Keith ; Koehler, Anne B. ; McLaren, Keith Robert ; Beaumont, Adrian N. |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 33.2017, 2, p. 502-512
|
Subject: | Log ratio transformation | Market shares | Maximum likelihood estimation | Model invariance | Multi-series models | New products | Prediction distributions | US automobiles sales | Vector exponential smoothing | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Zustandsraummodell | State space model | Schätztheorie | Estimation theory | Maximum-Likelihood-Schätzung |
-
An hourly periodic state space model for modelling French national electricity load
Dordonnat, V., (2008)
-
Monte Carlo maximum likelihood estimation for generalized long-memory time series models
Mesters, G., (2016)
-
Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
Blasques, Francisco, (2016)
- More ...
-
Forecasting compositional time series : a state space approach
Snyder, Ralph D., (2015)
-
Monitoring processes with changing variances
Ord, John Keith, (2008)
-
Monitoring processes with changing variances
Ord, John Keith, (2009)
- More ...