Forecasting Inflation in a Data-Rich Environment : The Benefits of Machine Learning Methods
Year of publication: |
2019
|
---|---|
Authors: | Medeiros, Marcelo C. |
Other Persons: | Vasconcelos, Gabriel (contributor) ; Veiga, Alvaro (contributor) ; Zilberman, Eduardo (contributor) |
Publisher: |
[2019]: [S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Inflationsrate | Inflation rate |
Extent: | 1 Online-Ressource (88 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments April 30, 2019 erstellt |
Other identifiers: | 10.2139/ssrn.3155480 [DOI] |
Classification: | C22 - Time-Series Models ; E37 - Forecasting and Simulation |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Gogas, Periklis, (2017)
-
Forecasting inflation in Argentina : a comparison of different models
D'Amato, Laura, (2018)
-
Macroeconomic Forecasting in India : Does Machine Learning Hold the Key to Better Forecasts?
Pratap, Bhanu, (2021)
- More ...
-
Short-term Covid-19 forecast for latecomers
Medeiros, Marcelo C., (2021)
-
Short-term Covid-19 forecast for latecomers
Medeiros, Marcelo C., (2021)
-
Short-term Covid-19 forecast for latecomers
Medeiros, Marcelo C., (2022)
- More ...