Forecasting inflection points : hybrid methods with multiscale machine learning algorithms
Year of publication: |
2021
|
---|---|
Authors: | Chevallier, Julien ; Zhu, Bangzhu ; Zhang, Lyuyuan |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 57.2021, 2, p. 537-575
|
Subject: | Genetic algorithms | Ensemble empirical mode decomposition | Least squares support vector machine | Grid Search | Particle swarm optimization | Algorithmus | Algorithm | Künstliche Intelligenz | Artificial intelligence | Evolutionärer Algorithmus | Evolutionary algorithm | Prognoseverfahren | Forecasting model | Mustererkennung | Pattern recognition | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Neuronale Netze | Neural networks |
-
Application of optimized machine learning techniques for prediction of occupational accidents
Sarkar, Sobhan, (2019)
-
Predict stock prices using supervised learning algorithms and particle swarm optimization algorithm
Bazrkar, Mohammad Javad, (2023)
-
Extreme learning with chemical reaction optimization for stock volatility prediction
Nayak, Sarat, (2020)
- More ...
-
Local Gaussian correlations in financial and commodity markets
Quynh Nga Nguyen, (2020)
-
Zhu, Bangzhu, (2021)
-
Enriching the VaR framework to EEMD with an application to the European carbon market
Zhu, Bangzhu, (2018)
- More ...