Forecasting stock market realized volatility using random forest and artificial neural network in South Africa
Year of publication: |
2024
|
---|---|
Authors: | Diane, Lamine ; Brijlal, Pradeep |
Published in: |
International journal of economics and financial issues : IJEFI. - Mersin : EconJournals, ISSN 2146-4138, ZDB-ID 2632572-X. - Vol. 14.2024, 2, p. 5-14
|
Subject: | Forecasting | Realized Volatility | Random Forest | Artificial Neural Network | Volatilität | Volatility | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Aktienmarkt | Stock market | Südafrika | South Africa | Theorie | Theory | Prognose | Forecast | Kapitaleinkommen | Capital income | Forstwirtschaft | Forestry |
-
Machine-learning stock market volatility : predictability, drivers, and economic value
Díaz, Juan, (2024)
-
Do industry returns predict the stock market? : A reprise using the random forest
Ciner, Cetin, (2019)
-
Realized volatility forecasting with neural networks
Bucci, Andrea, (2020)
- More ...
-
Evans, Dylan, (2023)
-
The use of capital budgeting techniques in businesses : a perspective from the Western cape
Brijlal, Pradeep, (2009)
-
Education and SMME business growth : a gender perspective from South Africa
Brijlal, Pradeep, (2013)
- More ...