Functional-bandwidth kernel for Support Vector Machine with Functional Data : an alternating optimization algorithm
Year of publication: |
2019
|
---|---|
Authors: | Blanquero, R. ; Carrizosa, Emilio ; Jiménez-Cordero, A. ; Martín-Barragán, B. |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 275.2019, 1 (16.5.), p. 195-207
|
Subject: | Data mining | Functional Data classification | Parameter tuning | SVM | Functional bandwidth | Theorie | Theory | Data Mining | Mustererkennung | Pattern recognition | Algorithmus | Algorithm |
-
Sivasankar, E., (2019)
-
Depth-based support vector classifiers to detect data nests of rare events
Dyckerhoff, Rainer, (2021)
-
Optimizing data stream representation : an extensive survey on stream clustering algorithms
Carnein, Matthias, (2019)
- More ...
-
A dissimilarity-based approach for classification
Carrizosa, Emilio, (2005)
-
Locating a competitive facility in the plane with a robustness criterion
Blanquero, R., (2011)
-
Cost-sensitive Feature Selection for Support Vector Machines
Benítez-Peña, S., (2019)
- More ...