Extent: | Online-Ressource v.: digital |
---|---|
Series: | |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Includes bibliographical references and index Preface; Contents; Introduction and Historical Remarks; 1.1 Background; 1.2 Description of contents; Fundamentals; 2.1 Fuzzy programming; 2.1.1 Fuzzy sets; 2.1.2 Fuzzy goals and Fuzzy constraints; 2.1.3 Linear programming problems with fuzzy parameters; 2.1.3.1 Possibility-based model; 2.1.3.2 Level set-based model; 2.2 Stochastic programming; 2.2.1 Random variables; 2.2.2 Two-stage programming; 2.2.3 Chance constraint programming; 2.3 Multiobjective programming; 2.3.1 Multiobjective programming problem; 2.3.2 Interactive multiobjective programming; 2.3.3 Fuzzy multiobjective programming 2.4 Two-level programming2.4.1 Fuzzy programming for two-level programming; 2.4.2 Stackelberg solution to two-level programming problem; 2.5 Genetic algorithms; 2.5.1 Fundamental elements in genetic algorithms; 2.5.1.1 Representation of individuals; 2.5.1.2 Fitness function and scaling; 2.5.1.3 Genetic operators; 2.5.2 Genetic algorithm for integer programming; Computational procedure of GADSLPRRSU; Fuzzy Multiobjective Stochastic Programming; 3.1 Fuzzy multiobjective stochastic linear programming; 3.1.1 Expectation and variance models; 3.1.1.1 Expectation model; 3.1.1.2 Variance model 3.1.1.3 Numerical example3.1.2 Probability and fractile models; 3.1.2.1 Probability model; 3.1.2.2 Numerical example; 3.1.2.3 Fractile model; 3.1.2.4 Numerical example; 3.1.3 Simple recourse model; Interactive fuzzy satisficing method for the simple recourse model; 3.1.3.1 Numerical example; 3.2 Extensions to integer programming; 3.2.1 Expectation and variance models; 3.2.1.1 Expectation model; 3.2.1.2 Variance model; Interactive fuzzy satisficing method for the variance model with integer decision variables; 3.2.1.3 Numerical example; 3.2.2 Probability and fractile models 3.2.2.1 Probability modelInteractive fuzzy satisficing method for the probability model with integer decision variables; 3.2.2.2 Numerical example; 3.2.2.3 Fractile model; Interactive fuzzy satisficing method for the fractile model with integer decision variables; 3.2.3 Simple recourse model; Interactive fuzzy satisficing method for the simple recourse model with integer decision variables; 3.2.3.1 Numerical example; Multiobjective Fuzzy Random Programming; 4.1 Multiobjective fuzzy random linear programming; Definition 4.1 (Fuzzy random variable). 4.1.1 Possibility-based expectation and variance models4.1.1.1 Possibility-based expectation model; Definition 4.2 (E-P-Pareto Optimal Solution).; 4.1.1.2 Possibility-based variance model; 4.1.1.3 Numerical example; 4.1.2 Possibility-based probability and fractile models; 4.1.2.1 Possibility-based probability model; 4.1.2.2 Possibility-based fractile model; 4.1.2.3 Numerical example; 4.1.3 Level set-based models; 4.1.3.1 Level set-based expectation model; 4.1.3.2 Level set-based variance model; 4.1.3.3 Level set-based probability model; 4.1.3.4 Level set-based fractile model 4.1.3.5 Numerical example Electronic reproduction; Available via World Wide Web |
ISBN: | 1-283-08012-5 ; 978-1-4419-8402-9 ; 978-1-283-08012-5 ; 1-283-08000-1 ; 978-1-4419-8401-2 |
Other identifiers: | 10.1007/978-1-4419-8402-9 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
Persistent link: https://www.econbiz.de/10014275236