Gaussian Markov random fields for discrete optimization via simulation : framework and algorithms
Year of publication: |
2019
|
---|---|
Authors: | Salemi, Peter L. ; Song, Eunhye ; Nelson, Barry L. ; Staum, Jeremy |
Published in: |
Operations research. - Catonsville, MD : INFORMS, ISSN 0030-364X, ZDB-ID 123389-0. - Vol. 67.2019, 1, p. 250-266
|
Subject: | large-scale discrete optimization via simulation | inferential optimization | Gaussian Markov random fields | Simulation | Markov-Kette | Markov chain | Theorie | Theory | Stochastischer Prozess | Stochastic process | Algorithmus | Algorithm |
-
An anytime multistep anticipatory algorithm for online stochastic combinatorial optimization
Mercier, Luc, (2011)
-
Ma, Will, (2018)
-
A multi-fidelity rollout algorithm for dynamic resource allocation in population disease management
Ho, Ting-Yu, (2019)
- More ...
-
Rapid discrete optimization via simulation with Gaussian Markov random fields
Semelhago, Mark, (2021)
-
Uncertainty quantification in vehicle content optimization for General Motors
Song, Eunhye, (2020)
-
Input-output uncertainty comparisons for discrete optimization via simulation
Song, Eunhye, (2019)
- More ...