Improving credit risk assessment through deep learning-based consumer loan default prediction model
Year of publication: |
2023
|
---|---|
Authors: | Jumaa, Muhamad AbdulAziz Muhamad Saleh ; Saqib, Mohammed ; Attar, Arif |
Published in: |
International journal of finance & banking studies : JJFBS. - Istanbul : [Verlag nicht ermittelbar], ISSN 2147-4486, ZDB-ID 2724514-7. - Vol. 12.2023, 1, p. 85-92
|
Subject: | Loans Default | Machine learning | Model. | UAE banks | Kreditrisiko | Credit risk | Insolvenz | Insolvency | Prognoseverfahren | Forecasting model | Kreditwürdigkeit | Credit rating | Verbraucherkredit | Consumer credit | Vereinigte Arabische Emirate | United Arab Emirates | Kreditgeschäft | Bank lending | Basler Akkord | Basel Accord |
-
Predicting loss given default of unsecured consumer loans with time-varying survival scores
Li, Aimin, (2023)
-
Predicting prepayment and default risks of unsecured consumer loans in online lending
Li, Zhiyong, (2019)
-
Net flow rates versus roll rates as non-performing consumer loans forecasting methodologies
De Ribera Martin, Francisco de Asis, (2022)
- More ...
-
The state and transnational corporations : a network approach to industrial policy in India
Jansson, Hans, (1995)
-
Framing public engagement : a critical discourse analysis of GM Nation?
Attar, Arif, (2014)
-
The effect of corporate governance on bank performance evidence from UAE
Jumaa, Muhamad AbdulAziz Muhamad Saleh, (2020)
- More ...