Improving the short-term forecast of world trade during the Covid-19 pandemic using SWIFT data on letters of credit
Year of publication: |
2020
|
---|---|
Authors: | Carton, Benjamin ; Hu, Nan ; Mongardini, Joannes ; Moriya, Kei ; Radzikowski, Aneta |
Publisher: |
[Washington, DC] : International Monetary Fund |
Subject: | SWIFT | trade forecast | machine learning | Coronavirus | Prognoseverfahren | Forecasting model | Internationale Wirtschaft | International economy | Welt | World | Wirtschaftsprognose | Economic forecast | Epidemie | Epidemic | Künstliche Intelligenz | Artificial intelligence | Prognose | Forecast |
Extent: | 1 Online-Ressource (circa 72 Seiten) Illustrationen |
---|---|
Series: | IMF working papers. - Washington, DC : IMF, ZDB-ID 2108494-4. - Vol. WP/20, 247 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
ISBN: | 978-1-5135-6119-6 |
Other identifiers: | 10.5089/9781513561196.001 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Schlembach, Christoph, (2021)
-
Short-term forecasting of the coronavirus pandemic
Doornik, Jurgen A., (2022)
-
A machine learning approach to predicting bicycle demand during the COVID-19 pandemic
Baumanis, Carolina, (2023)
- More ...
-
Carton, Benjamin, (2021)
-
Global Smartphones Sales May Have Peaked
Mongardini, Joannes, (2020)
-
Ghazaryan, Narek, (2021)
- More ...