Intraday online investor sentiment and return patterns in the U.S. stock market
Year of publication: |
November 2017
|
---|---|
Authors: | Renault, Thomas |
Published in: |
Journal of banking & finance. - Amsterdam [u.a.] : Elsevier, ISSN 0378-4266, ZDB-ID 752905-3. - Vol. 84.2017, p. 25-40
|
Subject: | Asset pricing | Investor sentiment | Intraday return predictability | Textual analysis | Machine learning | Social media | USA | United States | Anlageverhalten | Behavioural finance | Kapitaleinkommen | Capital income | Aktienmarkt | Stock market | Social Web | Social web | Prognoseverfahren | Forecasting model | Börsenkurs | Share price | Volatilität | Volatility |
-
Renewable energy stocks forecast using Twitter investor sentiment and deep learning
Herrera, Gabriel Paes, (2022)
-
Nooijen, Steven J., (2016)
-
Behrendt, Simon, (2018)
- More ...
-
Economic uncertainty before and during the COVID-19 pandemic
Altig, Dave, (2020)
-
What makes cryptocurrencies special? Investor sentiment and return predictability during the bubble
Chen, Cathy Yi-Hsuan, (2019)
-
Words are Not All Created Equal : A New Measure of ECB Communication
Picault, Matthieu, (2017)
- More ...