Investigating customer churn in banking : a machine learning approach and visualization app for data science and management
Year of publication: |
2024
|
---|---|
Authors: | Singh, Pahul Preet ; Anik, Fahim Islam ; Senapati, Rahul ; Sinha, Arnav ; Sakib, Nazmus ; Hossain, Eklas |
Published in: |
Data science and management : DSM. - [Amsterdam] : Elsevier B.V., ISSN 2666-7649, ZDB-ID 3108238-5. - Vol. 7.2024, 1, p. 7-16
|
Subject: | Bank customer attrition | Churn prediction | Machine learning | Random forest | XGboost | Künstliche Intelligenz | Artificial intelligence | Data Mining | Data mining | Beziehungsmarketing | Relationship marketing | Prognoseverfahren | Forecasting model |
-
Chlebus, Marcin, (2020)
-
Improving churn prediction using imperialist competitive algorithm for feature selection in telecom
Abbasimehr, Hossein, (2024)
-
Artificial intelligence : redefining marketing management and the customer experience
McDowell Marinchak, Christina L., (2018)
- More ...
-
Sakib, Nazmus, (2021)
-
Frenemies : Foreign Imposed Alliance Treaties and Authoritarianism
Sakib, Nazmus, (2022)
-
Economic Resilience in the times of Public Health Shock : The Case of the US States
Osman, Syed Muhammad Ishraque, (2022)
- More ...