Investigating supply chain performance under game theory framework using intelligent particle swarm optimisation
Year of publication: |
2016
|
---|---|
Authors: | Tyagi, Annu ; Tyagi, Satish |
Published in: |
International journal of business performance and supply chain modelling : IJBPSCM. - Genève [u.a.] : Inderscience Enterprises, ISSN 1758-9401, ZDB-ID 2523114-5. - Vol. 8.2016, 3, p. 201-221
|
Subject: | game theory | normal distribution | demand allocation | particle swarm optimisation | Spieltheorie | Game theory | Lieferkette | Supply chain | Lagerhaltungsmodell | Inventory model | Allokation | Allocation | Wahlverhalten | Voting behaviour | Mathematische Optimierung | Mathematical programming |
-
Solving closed-loop supply chain problems using game theoretic particle swarm optimisation
Patne, Kalpit, (2018)
-
Turn-and-earn incentives with a product line
Cohen-Vernik, Dinah A., (2014)
-
The implication of vendor inventory liability period in a decentralised assembly system
Guan, Xu, (2016)
- More ...
-
An improved fuzzy-AHP (IFAHP) approach to compare SECI modes
Tyagi, Satish, (2016)
-
Value stream mapping to reduce the lead-time of a product development process
Tyagi, Satish, (2015)
-
Interactive adaptive particle swarm optimisation for optimal global supply chain design
Tyagi, Satish, (2017)
- More ...