Langevin and Hamiltonian Based Sequential MCMC for Efficient Bayesian Filtering in High-Dimensional Spaces
Year of publication: |
2017
|
---|---|
Authors: | Septier, Francois |
Other Persons: | Peters, Gareth (contributor) |
Publisher: |
[2017]: [S.l.] : SSRN |
Subject: | Bayes-Statistik | Bayesian inference | Theorie | Theory | Monte-Carlo-Simulation | Monte Carlo simulation | Zustandsraummodell | State space model | Zeitreihenanalyse | Time series analysis | Markov-Kette | Markov chain |
Extent: | 1 Online-Ressource (32 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | In: IEEE Journal of Selected Topics in Signal Processing, Special issue on Stochastic Simulation and Optimisation in Signal Processing (2015) Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments 2015 erstellt |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Stochastic conditional duration model with intraday seasonality and limit order book information
Toyabe, Tomoki, (2022)
-
Particle Markov chain Monte Carlo techniques of unobserved component time series models using ox
Nonejad, Nima, (2016)
-
Bayesian analysis of a threshold stochastic volatility model
Wirjanto, Tony S., (2016)
- More ...
-
Efficient Sequential Monte-Carlo Samplers for Bayesian Inference
Nguyen, Thi, (2017)
-
SMC-ABC methods for the estimation of stochastic simulation models of the limit order book
Peters, Gareth W., (2015)
-
Estimating quantile families of loss distributions for non-life insurance modelling via L-moments
Peters, Gareth, (2016)
- More ...