Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors
Year of publication: |
2019
|
---|---|
Authors: | Carriero, Andrea ; Clark, Todd E. ; Marcellino, Massimiliano |
Published in: |
Journal of econometrics. - Amsterdam [u.a.] : Elsevier, ISSN 0304-4076, ZDB-ID 184861-6. - Vol. 212.2019, 1, p. 137-154
|
Subject: | Big data | Forecasting | Structural VAR | VAR-Modell | VAR model | Bayes-Statistik | Bayesian inference | Prognoseverfahren | Forecasting model | Volatilität | Volatility | Stochastischer Prozess | Stochastic process | Big Data |
Description of contents: | Description [doi.org] |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Corrigendum enthalten in: Volume 227, Issue 2, April 2022, Seite 506-512 |
Other identifiers: | 10.1016/j.jeconom.2019.04.024 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Large vector autoregressions with stochastic volatility and flexible priors
Carriero, Andrea, (2016)
-
Minnesota-type adaptive hierarchical priors for large Bayesian VARs
Chan, Joshua, (2019)
-
Chapter 15. Forecasting with Bayesian Vector Autoregression
Karlsson, Sune, (2013)
- More ...
-
Assessing international commonality in macroeconomic uncertainty and its effects
Carriero, Andrea, (2020)
-
Large vector autoregressions with asymmetric priors
Carriero, Andrea, (2015)
-
Addressing COVID-19 outliers in BVARs with stochastic volatility
Carriero, Andrea, (2022)
- More ...