A large multi-group decision-making technique for prioritizing the big data-driven circular economy practices in the automobile component manufacturing industry
Year of publication: |
2021
|
---|---|
Authors: | Kamble, Sachin S. ; Belhadi, Amine ; Gunasekaran, Angappa ; Ganapathy, L. ; Verma, Surabhi |
Published in: |
Technological forecasting & social change : an international journal. - Amsterdam : Elsevier, ISSN 0040-1625, ZDB-ID 280700-2. - Vol. 165.2021, p. 1-13
|
Subject: | Automobile industry | Big Data | Circular economy | Large group decision making | PROMETHEE | Sustainability | Kfz-Industrie | Automotive industry | Kreislaufwirtschaft | Recycling | Gruppenentscheidung | Group decision-making | Industrie | Manufacturing industries | Nachhaltigkeit | Big data | Entscheidung | Decision |
-
Blasi, Silvia, (2020)
-
Big data-enabled large-scale group decision making for circular economy : an emerging market context
Modgil, Sachin, (2021)
-
Big data-driven fuzzy large-scale group decision making (LSGDM) in circular economy environment
Li, Xuan, (2022)
- More ...
-
3D printing for sustainable food supply chains : modelling the implementation barriers
Verma, Virendra Kumar, (2023)
-
A machine learning based approach for predicting blockchain adoption in supply Chain
Kamble, Sachin S., (2021)
-
Belhadi, Amine, (2022)
- More ...