Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information
We propose a Bayesian sequential learning framework for high-dimensional asset al-locations under model ambiguity and parameter uncertainty. The model is estimated via MCMC methods and allows for a wide range of data sources as inputs. Employing the proposed framework on a large set of NASDAQ-listed stocks, we observe that time-varying mixtures of high- and low-frequency based return predictions significantly improve the out-of-sample portfolio performance.