Learning the random variables in Monte Carlo simulations with stochastic gradient descent : machine learning for parametric PDEs and financial derivative pricing
Year of publication: |
2024
|
---|---|
Authors: | Becker, Sebastian ; Jentzen, Arnulf ; Müller, Marvin S. ; Wurstemberger, Philippe von |
Published in: |
Mathematical finance : an international journal of mathematics, statistics and financial economics. - Oxford [u.a.] : Wiley-Blackwell, ISSN 1467-9965, ZDB-ID 1481288-5. - Vol. 34.2024, 1, p. 90-150
|
Subject: | Monte-Carlo-Simulation | Monte Carlo simulation | Stochastischer Prozess | Stochastic process | Derivat | Derivative | Lernprozess | Learning process | Optionspreistheorie | Option pricing theory | Simulation |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Konferenzbeitrag ; Conference paper ; Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1111/mafi.12405 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A cost of carry-based framework for the Bitcoin futures price modeling
Lian, Yu-Min, (2019)
-
Model based Monte Carlo pricing of energy and temperature Quanto options
Caporin, Massimiliano, (2012)
-
Equilibrium option pricing : a Monte Carlo approach
Buchner, Axel, (2015)
- More ...
-
Pricing and hedging American-style options with deep learning
Becker, Sebastian, (2020)
-
Pricing and hedging American-style options with deep learning
Becker, Sebastian, (2020)
-
Hefter, Mario, (2019)
- More ...