Learning sequential option hedging models from market data
Year of publication: |
2021
|
---|---|
Authors: | Nian Ke ; Coleman, Thomas F. ; Li, Yuying |
Published in: |
Journal of banking & finance. - Amsterdam [u.a.] : Elsevier, ISSN 0378-4266, ZDB-ID 752905-3. - Vol. 133.2021, p. 1-14
|
Subject: | Data-Driven model | Discrete hedging | Feature extraction | Feature selection | Machine learning | Option | Recurrent neural network | Hedging | Neuronale Netze | Neural networks | Optionspreistheorie | Option pricing theory | Künstliche Intelligenz | Artificial intelligence | Lernprozess | Learning process | Optionsgeschäft | Option trading |
-
Pricing vanilla options using artificial neural networks : application to the South African market
Du Plooy, Ryno, (2021)
-
Accelerated American Option Pricing with deep neural networks
Anderson, David, (2021)
-
On a neural network to extract implied information from american options
Liu, Shuaiqiang, (2021)
- More ...
-
Learning minimum variance discrete hedging directly from the market
Nian Ke, (2018)
-
Estimating a hedge fund return model based on a small number of samples
Levchenkov, Dmitriy, (2009)
-
Calibrating volatility function bounds for an uncertain volatility model
Coleman, Thomas F., (2010)
- More ...