Least Squares Estimation of Linear and Nonlinear ARMAX Models under Data Heterogeneity
In this paper we consider the asymptotic properties of least squares estimators of the parameters of linear and nonlinear ARMAX models under data heterogeneity, where we allow the X-variables to be stochastic time series themselves, possibly depending on lagged dependent variables. These results are obtained by a further elaboration of the results in Bierens [1984, 1987].
Year of publication: |
1991
|
---|---|
Authors: | BIERENS, Herman J. |
Published in: |
Annales d'Economie et de Statistique. - École Nationale de la Statistique et de l'Admnistration Économique (ENSAE). - 1991, 20-21, p. 143-169
|
Publisher: |
École Nationale de la Statistique et de l'Admnistration Économique (ENSAE) |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Nonparametric cointegration tests
Bierens, Herman J., (1994)
-
A consistent Hausman-type model specification test
Bierens, Herman J., (1987)
-
A note on the limiting distribution of sample autocorrelations in the presence of a unit root
Bierens, Herman J., (1990)
- More ...