Machine Learning, Classification Algorithm and Cross Section of Stock/Bond Returns
Year of publication: |
2022
|
---|---|
Authors: | Chin, Jern Tat ; Lin, Hai ; Mei, Yi |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Klassifikation | Classification | Algorithmus | Algorithm | Kapitaleinkommen | Capital income |
Extent: | 1 Online-Ressource (41 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments December 18, 2022 erstellt |
Other identifiers: | 10.2139/ssrn.4306478 [DOI] |
Classification: | G12 - Asset Pricing ; G14 - Information and Market Efficiency; Event Studies |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A bibliometric analysis of machine learning econometrics in asset pricing
Zapata, Hector O., (2022)
-
The Promises and Pitfalls of Machine Learning for Predicting Stock Returns
Leung, Edward, (2020)
-
Industry Return Predictability : A Machine Learning Approach
Rapach, David, (2019)
- More ...
-
Machine Learning and the Cross-Section of Stock Returns
Chin, Jern Tat, (2022)
-
Efficient meta-heuristics for the multi-objective time-dependent orienteering problem
Mei, Yi, (2016)
-
Mostofi, Amirhossein, (2024)
- More ...