Machine Learning for Quantitative Finance : Fast Derivative Pricing, Hedging and Fitting
Year of publication: |
2018
|
---|---|
Authors: | De Spiegeleer, Jan |
Other Persons: | Madan, Dilip B. (contributor) ; Reyners, Sofie (contributor) ; Schoutens, Wim (contributor) |
Publisher: |
[2018]: [S.l.] : SSRN |
Subject: | Hedging | Optionspreistheorie | Option pricing theory | Derivat | Derivative | Finanzmathematik | Mathematical finance | Künstliche Intelligenz | Artificial intelligence |
Extent: | 1 Online-Ressource (15 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 5, 2018 erstellt |
Other identifiers: | 10.2139/ssrn.3191050 [DOI] |
Classification: | C60 - Mathematical Methods and Programming. General ; G10 - General Financial Markets. General |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Izmailov, Alexander, (2015)
-
Machine learning for quantitative finance : fast derivative pricing, hedging and fitting
De Spiegeleer, Jan, (2018)
-
Locally phi-integrable sigma-martingale densities for general semimartingales
Choulli, Tahir, (2015)
- More ...
-
Machine learning for quantitative finance : fast derivative pricing, hedging and fitting
De Spiegeleer, Jan, (2018)
-
ESG : A New Dimension in Portfolio Allocation
De Spiegeleer, Jan, (2020)
-
ESG: a new dimension in portfolio allocation
De Spiegeleer, Jan, (2023)
- More ...