Machine learning goes global : cross-sectional return predictability in international stock markets
Year of publication: |
2023
|
---|---|
Authors: | Cakici, Nusret ; Fieberg, Christian ; Metko, Daniel ; Zaremba, Adam |
Published in: |
Journal of economic dynamics & control. - Amsterdam [u.a.] : Elsevier, ISSN 0165-1889, ZDB-ID 717409-3. - Vol. 155.2023, p. 1-32
|
Subject: | Machine learning | Return predictability | International stock markets | The cross-section of stock returns | Forecast combination | Asset pricing | Firm size | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Kapitalmarktrendite | Capital market returns | Aktienmarkt | Stock market | Börsenkurs | Share price | Welt | World | CAPM | Künstliche Intelligenz | Artificial intelligence | Betriebsgröße |
-
Changes in shares outstanding and country stock returns around the world
Long, Huaigang, (2024)
-
Trade competitiveness and the aggregate returns in global stock markets
Chiah, Mardy, (2023)
-
Fieberg, Christian, (2024)
- More ...
-
Machine Learning Goes Global : Cross-Sectional Return Predictability in International Stock Markets
Cakici, Nusret, (2022)
-
Factor Momentum Versus Stock Price Momentum : A Revisit
Cakici, Nusret, (2023)
-
Factor Momentum Versus Stock Price Momentum : A Revisit
Cakici, Nusret, (2023)
- More ...