Markov-switching models with unknown error distributions : identification and inference within the Bayesian framework
Year of publication: |
2024
|
---|---|
Authors: | Hwu, Shih-Tang ; Kim, Chang-jin |
Published in: |
Studies in nonlinear dynamics and econometrics : SNDE ; quarterly publ. electronically on the internet. - Berlin : De Gruyter, ISSN 1558-3708, ZDB-ID 1385261-9. - Vol. 28.2024, 2, p. 177-199
|
Subject: | identification condition | label switching problem | Markov chain Monte Carlo | mixture of normals | semi-parametric Bayesian inference | unknown error distribution | Markov-Kette | Markov chain | Bayes-Statistik | Bayesian inference | Statistische Verteilung | Statistical distribution | Nichtparametrisches Verfahren | Nonparametric statistics | Monte-Carlo-Simulation | Monte Carlo simulation | Schätztheorie | Estimation theory |
-
Volatility estimation using a rational GARCH model
Takaishi, Tetsuya, (2018)
-
Partially censored posterior for robust and efficient risk evaluation
Borowska, Agnieszka, (2020)
-
Partially censored posterior for robust and efficient risk evaluation
Borowska, Agnieszka, (2019)
- More ...
-
HWU, SHIH-TANG, (2019)
-
An N-state endogenous Markov-switching model with applications in macroeconomics and finance
Hwu, Shih-Tang, (2021)
-
Hwu, Shih-Tang, (2017)
- More ...