Matrix evolutions : synthetic correlations and explainable machine learning for constructing robust investment portfolios
Year of publication: |
2021
|
---|---|
Authors: | Papenbrock, Jochen ; Schwendner, Peter ; Jaeger, Markus ; Krügel, Stephan |
Published in: |
The journal of financial data science. - New York, NY : Pageant Media, Ltd., ISSN 2640-3951, ZDB-ID 2957666-0. - Vol. 3.2021, 2, p. 51-69
|
Subject: | Statistical methods | big data/machine learning | portfolio construction | performance measurement | Portfolio-Management | Portfolio selection | Performance-Messung | Performance measurement | Korrelation | Correlation | Künstliche Intelligenz | Artificial intelligence | Lernen | Learning | Robustes Verfahren | Robust statistics | Statistische Methode | Statistical method | Lernprozess | Learning process |
-
Interpretable machine learning for diversified portfolio construction
Jaeger, Markus, (2021)
-
Machine learning algorithms to classify future returns using structured and unstructured data
Livnat, Joshua, (2021)
-
A machine learning approach in regime-switching risk parity portfolios
Uysal, A. Sinem, (2021)
- More ...
-
Understanding Machine Learning for Diversified Portfolio Construction by Explainable AI
Jaeger, Markus, (2020)
-
Papenbrock, Jochen, (2020)
-
Interpretable machine learning for diversified portfolio construction
Jaeger, Markus, (2021)
- More ...