Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions
Year of publication: |
2022
|
---|---|
Authors: | Wang, Fa |
Published in: |
Journal of econometrics. - Amsterdam [u.a.] : Elsevier, ISSN 0304-4076, ZDB-ID 184861-6. - Vol. 229.2022, 1, p. 180-200
|
Subject: | Factor model | Factor-augmented regression | Forecasting | High dimension | Maximum likelihood | Mixed measurement | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Faktorenanalyse | Factor analysis | Regressionsanalyse | Regression analysis | Schätztheorie | Estimation theory | Induktive Statistik | Statistical inference | Schätzung | Estimation |
-
Maximum likelihood estimation and inference for high dimensional nonlinear factor models
Wang, Fa, (2017)
-
Estimation and inference for high dimensional factor model with regime switching
Urga, Giovanni, (2024)
-
Confidence intervals in regressions with estimated factors and idiosyncratic components
Fosten, Jack, (2017)
- More ...
-
Estimating and Testing High Dimensional Factor Models With Multiple Structural Changes
Baltagi, Badi H., (2020)
-
Estimating and testing high dimensional factor models with multiple structural changes
Baltagi, Badi H., (2021)
-
Supplier selection with information disclosure in the presence of uninformed consumers
Wang, Fa, (2022)
- More ...