Minnesota-type adaptive hierarchical priors for large Bayesian VARs
Year of publication: |
2021
|
---|---|
Authors: | Chan, Joshua |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 37.2021, 3, p. 1212-1226
|
Subject: | Forecasting | Global-local prior | Large autoregression | Minnesota prior | Shrinkage prior | Stochastic volatility | Bayes-Statistik | Bayesian inference | Theorie | Theory | Prognoseverfahren | Forecasting model | VAR-Modell | VAR model | Stochastischer Prozess | Stochastic process | Volatilität | Volatility | Zeitreihenanalyse | Time series analysis |
-
Minnesota-type adaptive hierarchical priors for large Bayesian VARs
Chan, Joshua, (2019)
-
Large vector autoregressions with asymmetric priors
Carriero, Andrea, (2015)
-
Common drifting volatility in large Bayesian VARs
Carriero, Andrea, (2016)
- More ...
-
Asymmetric conjugate priors for large Bayesian VARs
Chan, Joshua, (2022)
-
Pitfalls of estimating the marginal likelihood using the modified harmonic mean
Chan, Joshua, (2015)
-
Marginal likelihood estimation with the cross-entropy method
Chan, Joshua, (2015)
- More ...