Missing data : five practical guidelines
Year of publication: |
2014
|
---|---|
Authors: | Newman, Daniel A. |
Published in: |
Organizational research methods : ORM. - Thousand Oaks, Calif. [u.a] : Sage, ISSN 1094-4281, ZDB-ID 1427023-7. - Vol. 17.2014, 4, p. 372-411
|
Subject: | missing data | full information maximum likelihood (FIML) | EM algorithm | multiple imputation | R syntax/R code | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Schätztheorie | Estimation theory | Statistische Methode | Statistical method | Datenqualität | Data quality |
-
Hybrid multiple imputation in a large scale complex survey
Razzak, Humera, (2019)
-
A bayesian approach to parameter estimation in the presence of spatial missing data
Panzera, Domenica, (2016)
-
Incorporating short data into large mixed- frequency VARs for regional nowcasting
Koop, Gary, (2023)
- More ...
-
Gender and leadership emergence: A meta-analysis and explanatory model
Badura, Katie L., (2018)
-
Vocational interests, gender, and job performance : Two person–occupation cross‐level interactions
Wee, Serena, (2020)
-
Never say "always"? : extreme item wording effects on scalar invariance and item response curves
Nye, Christopher D., (2010)
- More ...