Model efficiency and uncertainty in quantile estimation of loss severity distributions
Year of publication: |
2019
|
---|---|
Authors: | Brazauskas, Vytaras ; Upretee, Sahadeb |
Published in: |
Risks : open access journal. - Basel : MDPI, ISSN 2227-9091, ZDB-ID 2704357-5. - Vol. 7.2019, 2/55, p. 1-16
|
Subject: | data truncation and censoring | empirical estimator | maximum likelihood | model uncertainty | percentile matching | quantile estimation | Schätztheorie | Estimation theory | Risiko | Risk | Statistische Verteilung | Statistical distribution | Schätzung | Estimation | Maximum-Likelihood-Schätzung | Maximum likelihood estimation |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/risks7020055 [DOI] hdl:10419/257893 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Model efficiency and uncertainty in quantile estimation of loss severity distributions
Brazauskas, Vytaras, (2019)
-
Three regime bivariate normal distribution : a new estimation method for co-value-at-risk, CoVaR
Choi, Ji-Eun, (2019)
-
Risk Estimation for GARCH Processes with Heavy-Tailed Innovations
Prohl, Silke, (2019)
- More ...
-
Model efficiency and uncertainty in quantile estimation of loss severity distributions
Brazauskas, Vytaras, (2019)
-
Model Efficiency and Uncertainty in Quantile Estimation of Loss Severity Distributions
Brazauskas, Vytaras, (2019)
-
Computing and estimating distortion risk measures : how to handle analytically intractable cases?
Upretee, Sahadeb, (2023)
- More ...