Multi-Relational Graph Convolution Network Prediction of Climate Change Impact on Firms
Year of publication: |
[2022]
|
---|---|
Authors: | Gupta, Aparna ; Kar, Koushik ; Liu, Sijia ; Palepu, Sai ; Popa, Lucian ; Zhu, Yada |
Publisher: |
[S.l.] : SSRN |
Subject: | Klimawandel | Climate change | Prognoseverfahren | Forecasting model | Graphentheorie | Graph theory | Prognose | Forecast | Unternehmensnetzwerk | Business network |
Extent: | 1 Online-Ressource (30 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 18, 2022 erstellt |
Other identifiers: | 10.2139/ssrn.4140442 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
ChatGPT Informed Graph Neural Network for Stock Movement Prediction
Chen, Zihan, (2023)
-
Dynamic relational graph convolutional network for metro passenger flow forecasting
He, Bisheng, (2023)
-
Graph Neural Networks for Forecasting Realized Volatility with Nonlinear Spillover Effects
Zhang, Chao, (2023)
- More ...
-
Designing risk-free service for renewable wind and solar resources
Gupta, Aparna, (2024)
-
Long-term Trends based Indicator for Climate Change Impact on Firms
Gupta, Aparna, (2022)
-
Designing Risk-free Service for Renewable Wind and Solar Resources
Gupta, Aparna, (2022)
- More ...