Neural stochastic differential equations for conditional time series generation using the Signature-Wasserstein-1 metric
Year of publication: |
2023
|
---|---|
Authors: | Díaz Lozano, Pere ; Lozano Bagén, Toni ; Vives, Josep |
Published in: |
The journal of computational finance : JFC. - London : Infopro Digital Risk, ISSN 1755-2850, ZDB-ID 2091445-3. - Vol. 27.2023, 1, p. 1-23
|
Subject: | conditional generative modeling | neural networks | expected signature | rough path theory | Wasserstein generative adversarial networks | neural stochastic differential equations | Neuronale Netze | Neural networks | Theorie | Theory | Analysis | Mathematical analysis | Stochastischer Prozess | Stochastic process | Zeitreihenanalyse | Time series analysis |
-
Robust pricing and hedging via neural stochastic differential equations
Gierjatowicz, Patrick, (2022)
-
NNPF : Neural Network Particle Filter for time series data
Peerlings, Dewi, (2024)
-
Effective crude oil prediction using CHS-EMD decomposition and PS-RNN model
Usha Ruby, A., (2024)
- More ...
-
Guerdouh, Dalila, (2022)
-
Time-consistent investment and consumption strategies under a general discount function
Alia, Ishak, (2021)
-
Alòs, Elisa, (2007)
- More ...