Non-parametric Bayesian updating and windowing with kernel density and the kudzu algorithm
Year of publication: |
2022
|
---|---|
Authors: | Grant, Robert |
Published in: |
International journal of computational economics and econometrics : IJCEE. - Genève [u.a.] : Inderscience Enterprises, ISSN 1757-1189, ZDB-ID 2545120-0. - Vol. 12.2022, 4, p. 405-428
|
Subject: | Bayesian data analysis | big data | density estimation trees | kernel density estimation | non-parametric statistics | streaming data | Bayes-Statistik | Bayesian inference | Nichtparametrisches Verfahren | Nonparametric statistics | Schätztheorie | Estimation theory | Statistische Verteilung | Statistical distribution | Big Data | Big data | Algorithmus | Algorithm | Statistische Methodenlehre | Statistical theory | Schätzung | Estimation |
-
Monteiro, Ana M., (2022)
-
Fast, approximate MCMC for Bayesian analysis of large data sets : a design based approach
Kaeding, Matthias, (2016)
-
On consistency of nonparametric normal mixtures for Bayesian density estimation
Lijoi, Antonio, (2005)
- More ...
-
A review of factors affecting online consumer search behaviour from an information value perspective
Grant, Robert, (2007)
-
The knowledge based view and global strategy : Past impact and future potential
Grant, Robert, (2021)
-
Grant, Robert, (2018)
- More ...