Optimizing high-dimensional stochastic forestry via reinforcement learning
Year of publication: |
2022
|
---|---|
Authors: | Tahvonen, Olli ; Suominen, Antti ; Malo, Pekka ; Viitasaari, Lauri ; Parkatti, Vesa-Pekka |
Published in: |
Journal of economic dynamics & control. - Amsterdam [u.a.] : Elsevier, ISSN 0165-1889, ZDB-ID 717409-3. - Vol. 145.2022, p. 1-23
|
Subject: | Artificial intelligence | Curse of dimensionality | Forestry | Natural resources | Optimal rotation | Reinforcement learning | Stochasticity | Theorie | Theory | Forstwirtschaft | Lernprozess | Learning process | Künstliche Intelligenz | Stochastischer Prozess | Stochastic process | Lernen | Learning | Forstökonomie | Forest economics | Mathematische Optimierung | Mathematical programming | Forstpolitik | Forest policy |
-
Reinforcement learning and stochastic optimisation
Jaimungal, Sebastian, (2022)
-
Optimal carbon storage in mixed-species size-structured forests
Assmuth, Aino, (2021)
-
Branch-and-cut for the forest harvest scheduling subject to clearcut and core area constraints
Constantino, Miguel Fragoso, (2018)
- More ...
-
Optimizing High Dimensional Stochastic Forestry Viareinforcement Learning
Tahvonen, Olli, (2022)
-
Economics of Multifunctional Forestry in the Sámi People Homeland Region
Parkatti, Vesa-Pekka, (2020)
-
Economics of multifunctional forestry in the Sámi people homeland region
Parkatti, Vesa-Pekka, (2021)
- More ...