Outlier-robust methods for forecasting realized covariance matrices
Year of publication: |
2024
|
---|---|
Authors: | Li, Dan ; Drovandi, Christopher ; Clements, Adam |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier Science, ISSN 0169-2070, ZDB-ID 1495951-3. - Vol. 40.2024, 1, p. 392-408
|
Subject: | HAR | Least-trimmed squares estimator | Minimum covariance determinant | Multivariate regression | Multivariate volatility | Portfolio allocation | Volatilität | Volatility | Korrelation | Correlation | Portfolio-Management | Portfolio selection | Schätztheorie | Estimation theory | Multivariate Analyse | Multivariate analysis | Kapitaleinkommen | Capital income | Prognoseverfahren | Forecasting model | Varianzanalyse | Analysis of variance |
-
DCC- and DECO-HEAVY : multivariate GARCH models based on realized variances and correlations
Bauwens, Luc, (2023)
-
Realized variances vs. correlations : unlocking the gains in multivariate volatility forecasting
Capera Romero, Laura, (2024)
-
Forecasting covariance matrices : a mixed approach
Halbleib, Roxana, (2016)
- More ...
-
A Bayesian approach for more reliable tail risk forecasts
Li, Dan, (2023)
-
Reducing the Risk in Tail Risk Forecasting Models
Clements, Adam, (2021)
-
Outlier Robust Methods for Forecasting Realized Covariance Matrices
Li, Dan, (2023)
- More ...