Overnight GARCH-Itô volatility models
Year of publication: |
2023
|
---|---|
Authors: | Kim, Donggyu ; Shin, Minseok ; Wang, Yazhen |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 41.2023, 4, p. 1215-1227
|
Subject: | High-frequency financial data | Low-frequency financial data | Quasi-maximum likelihood estimation | Stochastic differential equation | Volatility estimation and prediction | Volatilität | Volatility | Schätztheorie | Estimation theory | Börsenkurs | Share price | Zeitreihenanalyse | Time series analysis | Prognoseverfahren | Forecasting model | Stochastischer Prozess | Stochastic process | Schätzung | Estimation | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Finanzmarkt | Financial market |
-
Volatility analysis with realized GARCH-Itô models
Song, Xinyu, (2021)
-
Kim, Donggyu, (2016)
-
Hawkes-based models for high frequency financial data
Nyström, Kaj, (2022)
- More ...
-
Factor and Idiosyncratic VAR-Ito Volatility Models for Heavy-Tailed High-Frequency Financial Data
Shin, Minseok, (2021)
-
Adaptive Robust Large Volatility Matrix Estimation Based on High-Frequency Financial Data
Shin, Minseok, (2021)
-
Robust High-Dimensional Time-Varying Coefficient Estimation
Shin, Minseok, (2023)
- More ...