Predictably Unequal? The Effects of Machine Learning on Credit Markets
Year of publication: |
2020
|
---|---|
Authors: | Fuster, Andreas |
Other Persons: | Goldsmith-Pinkham, Paul (contributor) ; Ramadorai, Tarun (contributor) ; Walther, Ansgar (contributor) |
Publisher: |
[2020]: [S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Kreditmarkt | Credit market | Insolvenz | Insolvency | Theorie | Theory | Lernprozess | Learning process | Kreditwürdigkeit | Credit rating |
Extent: | 1 Online-Ressource (94 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments October 1, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3072038 [DOI] |
Classification: | G21 - Banks; Other Depository Institutions; Mortgages ; G28 - Government Policy and Regulation ; g50 ; R30 - Real Estate Markets, Spatial Production Analysis, and Firm Location. General |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Asymmetric Information and Subprime Mortgage Default
An, Xudong, (2015)
-
Impact of Mortgage Soft Information in Loan Pricing on Default Prediction using Machine Learning
Luong, Mai, (2022)
-
Lu, Zhiqiang, (2024)
- More ...
-
Predictably unequal? : the effects of machine learning on credit markets
Fuster, Andreas, (2022)
-
Predictably unequal? : the effects of machine learning on credit markets
Fuster, Andreas, (2017)
-
Predictably Unequal? The Effects of Machine Learning on Credit Markets
FUSTER, ANDREAS, (2021)
- More ...