Predicting COVID-19 incidences from patients' viral load using deep-learning
Year of publication: |
[2021]
|
---|---|
Authors: | Khalil, Athar ; Handawi, Khalil Al ; Chamseddine, Ibrahim ; Mohsen, Zeina ; Nour, Afif Abdel ; Feghali, Rita ; Kokkolaras, Michael |
Publisher: |
Montréal (Québec), Canada : GERAD, HÉC Montréal |
Subject: | Coronavirus | Prognoseverfahren | Forecasting model | Patienten | Patients | Neuronale Netze | Neural networks | Libanon | Lebanon |
Extent: | 1 Online-Ressource (circa 12 Seiten) Illustrationen |
---|---|
Series: | Les cahiers du GERAD. - Montréal (Québec), Canada : GERAD, HÉC Montréal, ZDB-ID 3026340-2. - Vol. G-2021, 48 (August 2021) |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Using data mining techniques to predict hospitalization of hemodialysis patients
Yeh, Jinn-yi, (2010)
-
Hybrid demand forecasting models : pre-pandemic and pandemic use studies
Kolkova, Andrea, (2022)
-
Deep neural network estimation in panel data models
Chronopoulos, Ilias, (2023)
- More ...
-
Weekly forecasting of new COVID-19 cases using past viral load measurements
Khalil, Athar, (2022)
-
Commonality decisions in product family design
Fellini, Ryan, (2006)
-
Analytical target cascading in product family design
Kokkolaras, Michael, (2006)
- More ...