Predicting poverty and malnutrition for targeting, mapping, monitoring, and early warning
Year of publication: |
2022
|
---|---|
Authors: | McBride, Linden ; Barrett, Christopher B. ; Browne, Christopher ; Hu, Leiqiu ; Liu, Yanyan ; Matteson, David S. ; Ying, Sun ; Wen, Jiaming |
Published in: |
Applied economic perspectives and policy. - Hoboken, NJ : Wiley, ISSN 2040-5804, ZDB-ID 2529839-2. - Vol. 44.2022, 2, p. 879-892
|
Subject: | big data | humanitarian assistance | machine learning | poverty mapping | poverty prediction | Armut | Poverty | Prognoseverfahren | Forecasting model | Armutsbekämpfung | Poverty reduction | Unterernährung | Undernutrition | Künstliche Intelligenz | Artificial intelligence | Messung | Measurement | Big Data | Big data | Data Mining | Data mining | Frühwarnsystem | Early warning system | Humanitäre Hilfe | Humanitarian aid |
-
Predicting poverty using geospatial data in Thailand
Puttanapong, Nattapong, (2020)
-
Constructing spatiotemporal poverty indices from big data
Njuguna, Christopher, (2017)
-
Estimating city-level poverty rate based on e-commerce data with machine learning
Wijaya, Dedy Rahman, (2022)
- More ...
-
Predicting poverty and malnutrition for targeting, mapping, monitoring, and early warning
McBride, Linden, (2021)
-
Predicting poverty with vegetation index
Tang, Binh, (2021)
-
Predicting poverty with vegetation index
Tang, Binh, (2022)
- More ...