Predictivity of Tourism Demand Data
Year of publication: |
[2021]
|
---|---|
Authors: | Zhang, Yishuo ; Li, Gang ; Muskat, Birgit ; Vu, Quan ; Law, Rob |
Publisher: |
[S.l.] : SSRN |
Subject: | Tourismus | Tourism | Prognoseverfahren | Forecasting model | Nachfrage | Demand |
Extent: | 1 Online-Ressource (26 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | In: Zhang, Y., Li, G., Muskat, B., Vu, H. Q., & Law, R. (2021). Predictivity of tourism demand data. Annals of Tourism Research, 89, 103234, doi: 10.1016/j.annals.2021.103234 Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 9, 2021 erstellt |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting tourist daily arrivals with a hybrid SARIMA-LSTM approach
Wu, Chi Wai, (2021)
-
Developing a Web-based tourism demand forecasting system
Song, Haiyan, (2008)
-
Forecasting tourism demand : a stochastic approach
Haehling von Lanzenauer, Christoph, (2007)
- More ...
-
Tourism demand forecasting : a decomposed deep learning approach
Zhang, Yishuo, (2021)
-
Improving the Resident–Tourist Relationship in Urban Hotspots
Vu, Quan, (2021)
-
The interplay of sensory and non-sensory factors in food tourism experiences
Muskat, Birgit, (2024)
- More ...