Random regression forest model using technical analysis variables : an application on Turkish banking sector in Borsa Istanbul (BIST)
Year of publication: |
2016
|
---|---|
Authors: | Emir, Senol ; Dinçer, Hasan ; Hacıoğlu, Ümit ; Yuksel, Serhat |
Published in: |
International journal of finance & banking studies : JJFBS. - Istanbul : [Verlag nicht ermittelbar], ISSN 2147-4486, ZDB-ID 2724514-7. - Vol. 5.2016, 3, p. 85-102
|
Subject: | Random Forest Regression | Artificial Neural Networks | Technical Analysis | Banking Sector | Variable Importance | Bank | Türkei | Turkey | Neuronale Netze | Neural networks | Forstwirtschaft | Forestry | Finanzanalyse | Financial analysis | Regressionsanalyse | Regression analysis | Prognoseverfahren | Forecasting model |
-
Application of machine learning in quantitative investment strategies on global stock markets
Grudniewicz, Jan, (2021)
-
Application of machine learning in algorithmic investment strategies on global stock markets
Grudniewicz, Jan, (2023)
-
Random forest regression model application for prediction of China's railway freight volume
Wang, Yang, (2021)
- More ...
-
Financial determinants of bank profits : a comparative analysis of Turkish banking sector
Dinçer, Hasan, (2014)
-
CMELS-based determinants for the credit rating of Turkish deposit banks
Yuksel, Serhat, (2015)
-
Dinçer, Hasan, (2018)
- More ...