Recursive importance sketching for rank constrained least squares : algorithms and high-order convergence
Year of publication: |
2024
|
---|---|
Authors: | Luo, Yuetian ; Huang, Wen ; Li, Xudong ; Zhang, Anru |
Published in: |
Operations research. - Linthicum, Md. : INFORMS, ISSN 1526-5463, ZDB-ID 2019440-7. - Vol. 72.2024, 1, p. 237-256
|
Subject: | low-rank matrix recovery | Machine Learning and Data Science | nonconvex optimization | quadratic convergence | rank-constrained least squares | Riemannian manifold optimization | sketching | Künstliche Intelligenz | Artificial intelligence | Schätztheorie | Estimation theory | Kleinste-Quadrate-Methode | Least squares method | Algorithmus | Algorithm | Mathematische Optimierung | Mathematical programming |
-
A More Efficient Algorithm for Convex Nonparametric Least Squares
Lee, Chia-Yen, (2013)
-
A more efficient algorithm for Convex Nonparametric Least Squares
Lee, Chia-yen, (2013)
-
Bissantz, Nicolai, (2008)
- More ...
-
Learning Markov models via low-rank optimization
Zhu, Ziwei, (2022)
-
Luo, Yuetian, (2024)
-
U.S. Increasingly Imports Nitrogen and Potash Fertilizer
Huang, Wen, (2004)
- More ...