Robust critical values for unit root tests for series with conditional heteroscedasticity errors : an application of the simple NoVaS transformation
Panagiotis Mantalos
In this paper, we introduce a set of critical values for unit root tests that are robust in the presence of conditional heteroscedasticity errors using the normalizing and variance-stabilizing transformation (NoVaS) and examine their properties using Monte Carlo methods. In terms of the size of the test, our analysis reveals that unit root tests with NoVaS-modified critical values have actual sizes close to the nominal size. For the power of the test, we find that unit root tests with NoVaS-modified critical values either have the same power as, or slightly better than, tests using conventional Dickey–Fuller critical values across the sample range considered.
Year of publication: |
2017
|
---|---|
Authors: | Mantalos, Panagiotis |
Published in: |
Cogent economics & finance. - Abingdon : Taylor & Francis, ISSN 2332-2039, ZDB-ID 2773198-4. - Vol. 5.2017, 1, p. 1-12
|
Subject: | critical values | normalizing and variance-stabilizing transformation | unit root tests | Einheitswurzeltest | Unit root test | Schätztheorie | Estimation theory | Zeitreihenanalyse | Time series analysis |
Saved in:
freely available
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1080/23322039.2016.1274282 [DOI] hdl:10419/194652 [Handle] |
Classification: | C01 - Econometrics ; C12 - Hypothesis Testing ; C15 - Statistical Simulation Methods; Monte Carlo Methods |
Source: | ECONIS - Online Catalogue of the ZBW |
Persistent link: https://www.econbiz.de/10011877334